
Optimization of the NCAR In Situ 
Turbulence Measurement 

Algorithm

Paul A. Robinson
AeroTech Research (USA), Inc.

Hampton, VA 23666

Weather Accident Prevention Annual Project Review
Hampton, VA May 23-25, 2000



Turbulence Product Integration in Communications InfrastructureTurbulence Product Integration in Communications Infrastructure

Communications Network

On-board aircraft systems:
- turbulence hazard metric
- eddy dissipation rate measurement

Strategic Products
AOC, Dispatch, ATC, FBO:
- forecast/reported turbulence
- location and severity

NWS, FSS
“Free Wx”

(e.g., RUC-2)
Turbulence forecast 

models

Tactical Products
reported/forecast turbulence updates

Aircraft independent turbulence severity 
transmissions “auto PIREP’s”

(thresholded onboard receiving aircraft)

eddy dissipation rate



NCAR In Situ AlgorithmNCAR In Situ Algorithm
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Turbulence Field EncounterTurbulence Field Encounter
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Verification of the MethodVerification of the Method
Turbulence Recovery Chart for Boeing 747
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Turbulence Recovery Chart for Convair 580
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Issues Under ConsiderationIssues Under Consideration

• Existence of inertial subrange

• Response to “discrete” events

• False and missed detection
• control inputs
• other gust inputs



“Discrete” Event Encounter
Vertical Wind (m/s)
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Response to Control InputsResponse to Control Inputs
Elevator Angle (degrees)
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In Situ Algorithm:In Situ Algorithm: Key Activities & AccomplishmentsKey Activities & Accomplishments
• Algorithm implemented and tested for 3 different aircraft type simulations: B-747, 
Convair 580, and B-757

• Algorithm tested and evaluated successfully for very different aircraft types and flight regimes 
(in simulation). 
• Convair implementation supports Allied Signal development effort, and Greely field test 
analyses.
• B-757 implementation begun 10/1/99. NASA providing aircraft data.

• Supporting NCAR/FAA flight verification, fine tuning, and algorithm performance 
optimization preparatory to commercial fleet deployment

• supporting NCAR analysis of FOQA data in assessing aircraft models and algorithm 
accuracy. 
• From FOQA data, a library of test cases of turbulence encounters has  been generated (see 
later slide). This allows the different aircraft to be flown through it, and the algorithm output 
evaluated for accuracy.
• FOQA data also being used to evaluate accuracy of aircraft model in current B-737 
implementation. More B-737 aircraft model data are required.

• Algorithm will be implemented on NASA B-757 Research aircraft for integrated flight 
experiment August 2000

• Full and complete evaluation of the algorithm will be carried out in flight. The algorithm’s 
accuracy and limitations will be evaluated and compared to other on-board “truth” 
measurements.
• Possible future amendments will be evaluated.



An Example of the Application of FOQA Data
Derived Vertical WindDerived Vertical Wind
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Future WorkFuture Work
• Expand algorithm for other aircraft types as per FAA/NCAR program 

plan (through FY 00).

• Support fleet implementation and analysis of results (FY 00 and out as 
required).

• Incorporate algorithm on NASA 757 Simulator and Research Aircraft for 
integrated AWIN flight experiment (FY00 - 01).

• Perform detailed assessment of algorithm performance based on flight 
experiments. Review possible upgrades/implementation issues.

• Support NCAR use of flight data in producing turbulence 
nowcast/forecast products.
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